
1. Introduction
Understanding the dynamics and the underlying physical mechanisms of the Earth's radiation belt electron fluxes 
is important for both nowcasting and forecasting in space weather. Significant advances have been made in 
understanding radiation belt electron dynamics using both physics-based models (e.g., Beutier & Boscher, 1995; 
Glauert et  al.,  2014; Li et  al.,  2016; Ma et  al.,  2018,  2015; Reeves et  al.,  2012; Subbotin & Shprits,  2009; 
Thorne, Li, et al., 2013; Tu et al., 2013) and machine learning techniques (e.g., Bortnik et al., 2018, 2016; Chu 
et al., 2021, 2017; Claudepierre & O'Brien, 2020; Pires de Lima et al., 2020; Sarma et al., 2020). It has been well 
acknowledged that wave-particle interactions play an important role in altering the electron flux distributions 
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(e.g., Li & Hudson, 2019 and references therein; Thorne, 2010 and references therein). Plasmaspheric hiss is one 
of the most important drivers of persistent energetic electron loss following injections in the plasmasphere and 
plumes (e.g., Li et al., 2019; Thorne et al., 2013a; Zhao et al., 2019), which is primarily responsible for the forma-
tion of the slot region (e.g., Lyons & Thorne, 1973). The hiss waves could cause significant energetic electron 
precipitations in the Earth's ionosphere and affect the magnetosphere-ionosphere coupling processes (e.g., Ma 
et al., 2021). The quasi-linear theory is the most widely adopted methodology to investigate these wave-particle 
interactions on a global scale, where the scattering and acceleration effects of different wave modes are incorpo-
rated as various diffusion coefficients (Schulz & Lanzerotti, 1974). By numerically solving the Fokker-Planck 
diffusion equation for radiation, the evolution of the electron phase space density can be obtained (e.g., Hua 
et al., 2020; Ma et al., 2015; Ni et al., 2017; Shprits et al., 2008; Thorne, Li, et al., 2013b; Tu et al., 2014; Xiao 
et  al.,  2009). However, the results of diffusion simulations can vary significantly depending on the adopted 
key input parameters associated with the plasma wave models, background magnetic field model, and electron 
density model (e.g., Abel & Thorne, 1998; Albert et al., 2020; Camporeale et al., 2016; Hua et al., 2019; Lei 
et al., 2017; Tu et al., 2013), whose measurements can be insufficient due to limited spatiotemporal coverage 
of the satellite trajectory, or inaccurate due to the instrument limitation or during extreme events. Accurately 
modeling the radiation belt electron flux decay and energetic electron precipitation is an important element for 
space weather nowcasting and forecasting. Therefore, it is important to quantify how the uncertainties of the 
key parameters due to limited or inaccurate satellite measurements affect radiation belt simulation performance, 
which helps to predict the radiation belt electron fluxes and their precipitation in the Earth's upper atmosphere.

Owing to the continuous accumulation of high-quality wave and particle measurements from multiple satellite 
missions and the development of the state-of-art modeling, rapid progress has been made in radiation belt electron 
forecasting using frontier methods, such as data assimilation, machine learning, and ensemble technique, in the 
past few decades (e.g., Camporeale, 2019; Camporeale et al., 2018, 2016; Castillo Tibocha et al., 2021; Cervantes 
et al., 2020; Kellerman, 2018; Kellerman et al., 2014, 2013; Morley et al., 2016; Myagkova et al., 2020; Saikin 
et al., 2021; Shprits et al., 2013; Smirnov et al., 2020). It is essential to understand how the errors in the model 
output can be apportioned to the uncertainties in the model input to enhance the model and forecast accuracy (e.g., 
Horne et al., 2021; Knipp et al., 2018; Morley, 2020). The current study investigates the impact on radiation belt 
simulations of uncertainties of an event-based wave and plasma models relying on measurements from Van Allen 
Probes within a limited spatiotemporal coverage during ∼6 days. By sampling input parameters and running a 
deterministic model numerous times, ensemble simulations can help us understand how the uncertainty propa-
gates in the model, as well as the confidence and range of predicted model outcomes, which is a necessary step 
toward robust space weather prediction (Murray, 2018). The ensemble modeling technique has gained popularity 
in space weather forecasting in recent years (e.g., Henley & Pope, 2017; Knipp, 2016 and references therein). 
For example, ensemble modeling of a coronal mass ejection evaluates the sensitivity of simulations to the model 
input parameters, which is important for potential model improvements and better predictions (e.g., Barnard 
et al., 2020; Cash et al., 2015). Chen et al. (2018) used the ensemble approach to investigate the sensitivity of 
ring current simulations to uncertainties in electric field boundary conditions. Guerra et al. (2020) used ensemble 
forecasts to improve the predictions of major solar flares by linearly combining multiple existing models.

Camporeale et al. (2016) reported on the first study to investigate the effects of uncertainties in the input param-
eters on the output of the quasi-linear diffusion simulations using the VERB (Versatile Electron Radiation Belt) 
code (Subbotin & Shprits,  2009), interpreting the deterministic physics-based model in a probabilistic way. 
Specifically, they varied the geomagnetic Kp index, the maximum latitude extent of chorus waves, and the elec-
tron density in the ensemble simulation with 225 members in total. Based on a sensitivity analysis, they found 
that perturbations in electron density are primarily responsible for the largest spread in simulated electron fluxes 
under the impact of chorus waves. However, they used the assumption of Gaussian distributions to sample the 
distributions of input parameters for simplicity. In addition, they did not include the cross-term diffusion in 
the simulations nor did they compare the simulated results with observations. Therefore, the effects of model 
uncertainties due to variations in the input parameters on the radiation belt electron simulations are still only 
understood in a limited way.

In this paper, we perform an ensemble of quasi-linear diffusion simulations of an outer radiation belt electron 
flux decay event at L = 3.5 under the impact of plasmaspheric hiss during the recovery phase of the geomagnetic 
storm on 7 November 2015, which has been previously reported by Ma et al.  (2016). As plasmaspheric hiss 
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plays a dominant role in driving the energetic electron flux evolution in this case (Ma et al., 2016), we limit our 
analysis to the following four input parameters: (a) hiss wave amplitude (Bw), (b) hiss wave peak frequency (fm), 
(c) background magnetic field (B0), and (d) total electron density (Ne). Based on observations from Van Allen 
Probes (Mauk et al., 2013), we use nonparametric statistics (i.e., percentiles) to sample the distributions of these 
four key input parameters with 11 points for each input, leading to 11 4–14,600 ensemble members. We addition-
ally improve the present radiation belt electron diffusion model by incorporating a changing wave environment 
at every time step in the calculation of the diffusion coefficients by using a rapid Lookup Table (LUT) method. 
Based on ensemble simulations, we intend to quantify the effects of uncertainties in the input parameters on the 
simulated electron fluxes, which is crucial for verification and uncertainty quantification of the existing radiation 
belt model, thereby improving radiation belt forecasts.

The paper is organized as follows. Section 2 presents how we sample the distributions of key input parameters 
based on Van Allen Probes observations and details about the model of ensemble simulations. In Section 3, we 
comprehensively analyze our ensemble simulations to see how uncertainties in the input parameters influence the 
electron flux evolutions and their relative importance to the simulation errors. The conclusions and discussions 
are presented in Section 4.

2. Data Sample and Model Description
2.1. Sampling Input Parameters Based on Van Allen Probes Observations

Figure 1 presents the sampling distributions of the four input parameters based on both Van Allen Probes obser-
vations following the geomagnetic storm on 7 November 2015. As discussed below, we adopt a hiss wave model 
based on statistics from Li et al. (2015), which is sorted into various geomagnetic conditions according to AL* 
(where AL* is the minimum AL in the previous 3 hr), as presented in Figure 1a. The background magnetic field 
(B0) is observed by the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS; Kletzing 
et al., 2013) instrument and projected to the geomagnetic equator at L = 3.5 using a dipolar latitudinal variation. In 
this study, we adopted the McIlwain L values calculated based on the TS04D magnetic field model (Tsyganenko 
& Sitnov, 2005). The equatorial magnetic fields agree with the dipolar geomagnetic field in general with only 
small relative deviations (Figure 1b). In contrast, the observed total electron density (Ne) shows strong variation 
compared with the empirical models from Sheeley et al. (2001) and Ozhogin et al. (2012). We assume the satellite 
is outside the plasmapause when the in situ density is smaller than either 30 cm −3 or the value from the plasma 
trough density model of Sheeley et al. (2001) or when electron cyclotron harmonic (ECH) waves are observed by 
the High Frequency Receiver (HFR) onboard EMFISIS (Meredith et al., 2009); otherwise, it is considered to be 
inside the plasmasphere. The identified plasmapause location along the Van Allen Probes trajectory is shown in 
Figure 1d. Consistent with the study of Ma et al. (2016), the Van Allen Probes were located mostly outside the 
plasmapause when crossing L = 3.5 during the first 25 hr and were mostly inside the plasmapause subsequently. 
However, Van Allen Probes only provided measurements on the dayside (MLT = ∼10 on the outbound trajectory 
and MLT = ∼17 on the inbound trajectory) during this event. Using THEMIS (Angelopoulos, 2008) measure-
ments on the nightside, Ma et al.  (2016) confirmed that the plasmapause locations were higher than L = 3.5 
on the nightside in this case. The plasmaspheric hiss wave power is selected with frequencies between 20 and 
4,000 Hz and an ellipticity larger than 0.7 (e.g., Li et al., 2015). The integral wave amplitude of plasmaspheric 
hiss from EMFISIS measurements when the satellites were inside the plasmasphere is presented in Figure 1e. The 
statistical hiss wave amplitude as a function of MLT based on the observed AL* index (Figure 1a) is displayed in 
Figure 1f, where we assume the wave amplitude to be zero on the dayside when the observed plasmapause loca-
tion is smaller than L = 3.5 (since plasmaspheric hiss is confined to the plasmasphere). Due to the limited spatial 
coverage of the Van Allen Probe measurements on the dayside during this ∼6-day event, we adopt the statistical 
distribution of wave amplitude from Li et al. (2015) and scale it based on the observed values. It is important to 
note that the instantaneous spatial extent of the hiss active region is usually less than 3 hr in MLT and less than 
∼1 RE in radial scale (Agapitov et al., 2018, 2021), and the temporal extent is up to ∼10 min at L < ∼4.5 (Zhang 
et al., 2021), though the correlation scale of hiss waves can indeed extend to a larger MLT sector spanning the 
dayside (Breneman et al., 2015; Li et al., 2017). Although the limited spatial (L, MLT, and MLAT) and temporal 
coverage of Van Allen Probes during this event precludes a reliable rescaling of hiss wave amplitude on a global 
scale, the present study assesses the impact of the uncertainties of the event-based wave and plasma models from 
such realistic and limited satellite measurements on the radiation belt simulations. For the same reason, we use 
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the statistical wave frequency spectral shape in different MLT sectors from Li et al. (2015) and shift it to a lower 
or higher frequency based on the observed wave peak frequency. Note that the shifted wave frequency spectra are 
still constrained within 20–4,000 Hz and normalized to 10 pT as the diffusion coefficients are proportional to the 

Figure 1. Sampling distributions of input parameters based on Van Allen Probes observations. (a) AL* index, where AL* 
is the minimum AL in the previous 3 hr. (b) Observed background magnetic field by EMFISIS at L = 3.5 projected to the 
geomagnetic equator, with the black dashed line representing the dipolar geomagnetic field. (c) Observed electron density 
(Ne) at L = 3.5 measured by EMFISIS. Here, red and black dashed lines represent the electron density from the empirical 
models of Sheeley et al. (2001) and Ozhogin et al. (2012), respectively. (d) Plasmapause locations identified from Van Allen 
Probe observations, with the black dashed line marking L = 3.5. Wave amplitude (Bw) of plasmaspheric hiss at L = 3.5 based 
on (e) EMFISIS measurements and (f) statistics of Li et al. (2015). Histogram of observed (g) background magnetic field, (h) 
electron density, (i) wave amplitude, and (j) wave peak frequency of plasmaspheric hiss, with blue star lines representing the 
sampled input parameter distributions using percentiles. The values from empirical models with corresponding percentiles 
based on observations are marked by red vertical dashed lines and stars.
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square of the wave amplitude in the quasi-linear regime, which allows us to only vary the wave peak frequency 
with the wave amplitude unchanged.

The histograms of the observed quantities, that is, background magnetic field, electron density, hiss wave ampli-
tude, and hiss wave peak frequency are shown in Figures 1g–1j, with the blue star lines representing the sampled 
input parameter distributions using percentiles. Specifically, there are 11 levels selected for each input, corre-
sponding to the percentiles of 1%, 5%, 16%, 25%, 36%, 50%, 62%, 74%, 84%, 95%, and 99%, leading to 11 4 
members in our ensemble. We use the dipolar geomagnetic field model and assume the electron density does 
not vary with latitude. Following previous studies (e.g., Hua et al., 2019, 2020), we adopt a latitudinally varying 
wave normal angle distribution for plasmaspheric hiss at magnetic latitudes ranging from the equator to 45° (Ni 
et al., 2013).

2.2. Lookup Table Method

In the majority of previous studies, the UCLA Full Diffusion Code (FDC) was used to calculate the wave-induced 
electron diffusion coefficients (e.g., Ni et al., 2008), where only single point in situ measurements or the statisti-
cal values of input parameters related to the wave model, background magnetic field, and electron density were 
used. It typically takes several hours to calculate diffusion coefficients for a single wave type at one L-shell 
and one MLT sector. Consequently, it is difficult to incorporate the dynamically changing wave environment at 
every time step using the FDC method since it is so computationally expensive. The studies of Mourenas and 
Ripoll (2012) and Artemyev et al. (2013) developed analytical formulas of electron diffusion coefficients scaled 
with parameters related to the wave models and the total electron density model. In the present study, we develop 
a Lookup Table (LUT) method (Bortnik et al., 2019), where we use a precalculated diffusion matrix to interpolate 
the time-dependent diffusion coefficients at every time step. It takes less than 1 s to calculate the diffusion coef-
ficients using the LUT method, which allows us to incorporate the changing wave environment at every time step 
in our ensemble radiation belt electron simulations. The calculation considers all possible wave-particle resonant 
interactions for the given wave frequency spectrum, wave normal angle distribution, and latitudinal distribution.

We precompute a large data set of diffusion coefficients using FDC as a function of electron pitch angle and 
energy, for different wave frequency ranges, latitude ranges, wave normal angle distributions, and fpe/fce ratios 
(ratio between the plasma frequency and the electron gyrofrequency). Sufficient calculation resolution is required, 
because the resonance between an electron (pitch angle α and energy E) and a wave (frequency ω and normal 
angle θ) may only occur at a specific latitude, and not others. The detailed information about precalculation 
and the validation of the LUT method is provided in the Supporting Information (Text S1 and Figures S1-S3 in 
Supporting Information S1). The final diffusion coefficients with a realistic frequency range, latitude range, and 
normal angle distribution could be constructed as the sum of the precalculated coefficients in each fine frequency 
range, latitude range, and normal angle distribution, weighted by the wave power at each frequency.

2.3. Two-Dimensional Radiation Belt Model

We simulate the electron flux evolution over a period of 134 hr (∼5.6 days) at L = 3.5 at the energy range of 50 
keV–5 MeV under the impact of plasmaspheric hiss by numerically solving the two-dimensional Fokker-Planck 
diffusion equation (e.g., Xiao et al., 2009). The electron phase space density (PSD, f) is related to the differential 
flux as f = j/p 2, where p is the electron momentum. The initial electron PSD distribution is collected by the Ener-
getic Particle, Composition, and Thermal Plasma (ECT) suite (Spence et al., 2013) using the measurements from 
Magnetic Electron Ion Spectrometer (MagEIS) (Blake et al., 2013), and Relativistic Electron-Proton Telescope 
(REPT) (Baker et al., 2013) instruments onboard Van Allen Probe A at ∼02:20 UT on 11 November 2015 when 
the satellite was near the geomagnetic equator (|MLAT| < 5°). Van Allen Probes measurements are used to update 
the electron PSDs at the lower energy boundary. Due to the fact that the observed electron PSDs at ∼5 MeV 
show only small variations, we believe that it is reasonable to approximate the electron PSDs at the upper energy 
boundary to be constant. We take f = 0 inside the bounce loss cone, and Dαα (∂f/∂α) + Dαp (∂f/∂p) = 0 at α = 90° 
(e.g., Albert et al., 2016; Hua et al., 2020), where α is the equatorial pitch angle. Using the LUT method described 
above, the changing four key input parameters are updated every time whenever the measurements are available 
or AL* is updated in our ensemble simulations. Note that the time resolution of AL* in the current study is 
30 min. Since the present study focuses on the electron flux decay driven by local wave-particle interactions, 
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and the typical timescale of radial diffusion at L = 3.5 during a nondisturbed period inside the plasmasphere is 
larger than 6 days (e.g., Brautigam & Albert, 2000; O’Brien et al., 2016), radial diffusion is not included in our 
ensemble simulations.

3. Ensemble Simulations
3.1. Simulation Baseline

Figure 2 presents a comparison of the spin-averaged electron flux evolution as a function of energy at color-coded 
times at L = 3.5 from both observation (Figure 2a) and simulation (Figure 2b) where the 50th percentiles of all 
four input parameters are adopted (hereafter referred to as simulation 1). The bounce-averaged diffusion coeffi-
cients based on these parameters are shown in Figure S2 in Supporting Information S1. The observed electron 
fluxes are collected from both Van Allen Probes near the geomagnetic equator (|MLAT|  <  5°). The overall 
agreement between the observed and simulated gradual electron flux decay demonstrates that the pitch-angle 
scattering by plasmaspheric hiss is primarily responsible for the electron flux decay at energies ranging from 
∼100 to ∼900 keV, with the most significant decay around ∼300 keV at L = 3.5 during the nondisturbed period, 
consistent with previous studies that plasmaspheric hiss plays a dominant role in forming the slot region (e.g., 
Lyons & Thorne, 1973). Furthermore, we also perform a simulation where all four input parameters that evolve 
with time based on observations (shown in Figure 1) are adopted (hereafter referred to as simulation 2), the result 
of which is displayed in Figure 2c. Although the electron flux decay in simulation two is slightly faster than in 
simulation 1, the main characteristics of the electron flux decay are consistent with each other and also agree with 
the observations. Since the current study intends to quantify the effects of uncertainties in each key input parame-
ter on the simulation results, we regard simulation 1 as the baseline in our ensemble for the following uncertainty 
quantification so that it will be more convenient to separate the impacts of each input parameter.

3.2. Uncertainty Quantification

3.2.1. Varying Only One Input Parameter

To investigate the sensitivity of the simulated electron fluxes to the uncertainties in each of the four input parame-
ters (Bw, B0, Ne, and fm), we first vary only one input parameter at a time and keep the other three inputs unchanged 
at their baseline levels. Figure 3 shows the regression of ensemble simulations by only varying one input param-
eter while the 50th percentile of other three inputs are adopted, showing the observed electron flux (jobs) versus 
simulated ones (jsim) color-coded by the percentile of input parameters of (a–d) hiss wave amplitude, (e–h) hiss 
wave peak frequency, (i-l) background magnetic field, and (m-p) electron density at four energies ranging from 
108 to 749 keV. Here, the dot size is proportional to (100%−|a%−50%|), where a% corresponds to the varied 
percentile of the inputs. Therefore, the results of the simulation baseline with the 50th percentile of all four inputs 
are shown as the green dots with the largest size. The comparison is shown at 7 time snapshots with the dots on 
the top right corner and the bottom left corner in each panel corresponding to the initial condition and the end of 
the simulation (134 hr), respectively. Besides, the plus lines show the results from simulation 2 where all input 

Figure 2. The comparison of spin-averaged electron flux evolutions as a function of energy at color-coded times at L = 3.5 
from (a) observation, (b) simulation where the 50th percentiles of all input parameters are adopted, and (c) simulation where 
all input parameters evolving with time based on observations are adopted.



Space Weather

HUA ET AL.

10.1029/2022SW003051

7 of 15

parameters that evolve with time based on observations are adopted. The simulated electron fluxes significantly 
deviate away from the observations when varying the hiss wave amplitude Bw (Figures 1a–1d), demonstrating 
that Bw plays an important role in causing simulation errors. Specifically, more intense Bw leads to faster decay 
for all energies (red dots, corresponding to the 99th percentile), while the simulated fluxes barely vary when Bw 
is too weak to scatter electrons (black dots, corresponding to the first percentile). In contrast, the variation of 
the simulated electron fluxes shows an opposite trend for lower and higher energy electrons when  varying the 
wave peak frequency fm and electron density Ne (Figures 1e–1h and 1m–p), which generally enter through the 
resonance condition. The simulations with larger fm and Ne result in faster decay at 108 keV but slower decay at 
higher energies over 354–749 keV compared to the baseline, which is due to the shift of the resonance energies 
(e.g., Schulz & Lanzerotti, 1974). The uncertainties in the background magnetic field B0 overall cause the small-
est errors in the simulated results (Figures 1i–l), possibly due to the fact that the relative deviation of the observed 
B0 from a dipole model is small.

To quantify the simulation errors, we calculate the simulation errors using the log accuracy ratio of log10(jsim/jobs) 
(e.g., Morley et al., 2016) obtained at the end of the simulations (hereafter referred to as simulation error), which 
is shown in Figure 4. The simulated electron flux decay is too fast (slow) compared to the observations when 
the error is smaller (larger) than 0. Clearly, the simulation errors caused by perturbations in Bw are larger than 
those driven by uncertainties in fm, Ne, and B0. Therefore, the influence of the input parameter uncertainties on 
simulation accuracy follows the sequence of error magnitudes: Err(Bw) > Err(fm) ≈ Err(Ne) > Err(B0). Note that 

Figure 3. Regression analysis of the ensemble simulations obtained by only varying one input parameter at a time, while 
the 50th percentiles of the other three inputs are adopted, showing the observed electron flux (jobs) versus simulated ones 
(jsim) color-coded by the percentile of input parameters of (a–d) hiss wave amplitude, (e–h) hiss wave peak frequency, (i–l) 
background magnetic field, and (m–p) electron density at indicated four energies. The plus lines correspond to the simulated 
results where all input parameters evolving with time based on observations are adopted.



Space Weather

HUA ET AL.

10.1029/2022SW003051

8 of 15

we select the color bar for a symmetric representation of underestimation and 
overestimation. The simulation errors when varying Bw can be smaller than 
−3 (Figure 4a), and we discuss the overall largest simulation errors in our 
ensemble in more detail below.

3.2.2. Varying Two Input Parameters

Figure 5 displays the ensemble simulation errors obtained by varying the two 
inputs on the vertical axis (percentile of Bw) and horizontal axis (from left to 
right: percentile of fm, B0, and Ne), while the 50th percentile is adopted for the 
remaining two input parameters. It is interesting to see that the fastest (shown 
as blue color) and slowest (shown as red color) simulated electron flux decay 
is always associated with the largest and smallest Bw regardless of the varia-
tions in fm, B0, and Ne. From the first and the last columns, we can see a simi-
lar opposite trend of the errors for lower and higher energies when varying 
between fm and Ne, showing that larger fm and Ne are more favorable for decay 
at lower energies and vice versa. Therefore, the energy of the most efficient 
electron flux decay strongly depends on fm and Ne. The perturbations in B0 
only slightly influence the simulation errors at 108 keV, while they barely 
affect simulation errors at higher energies, as shown in the second column.

3.2.3. Varying All Input Parameters

The goal of our ensemble simulations is to quantify the extremes of the fast-
est and slowest decay in our ensemble simulations. Therefore, for each point 
in Bw at a given energy, we calculate the smallest (corresponding to the fast-
est decay) and largest (corresponding to the slowest decay) simulation errors 
when varying the other three inputs and find the corresponding percentiles 
of the other three inputs, as shown in Figure 6. Overall, the largest errors of 

the fastest and slowest simulated electron flux decays are found for extreme cases of these four inputs, associated 
with the largest Bw and smallest B0, respectively. Due to the fact that the variation of B0 plays an insignificant role 
in affecting simulated results at higher energies (>108 keV) as mentioned above, the percentiles of B0 associated 
with the fastest and slowest decay do not show a clear trend. The absolute value of the errors of the fastest decay 
can reach ∼10 for electrons over 108–597 keV energies, which is much larger than the errors of the slowest decay 
(<5). The largest error of the slowest decay is the flux ratio between the initial condition and the observed fluxes 
at the end of the simulation, as the smallest Bw is too weak to scatter the electrons.

Based on our ensemble, we can turn the physics-based deterministic model into a probabilistic problem. We 
further calculate the probability density of the simulation errors in our ensemble to provide more useful informa-
tion that can benefit the nowcast and forecast of the radiation belt electron flux distribution. Here, we calculate 
the probability density based on the following steps:

1.  Based on the observations during this whole event in ∼6 days as shown in Figure 1, we get the probability 

density function (PDF) of these four key input parameters using the Gaussian fitting 1
�
√

2�
exp

(

−0.5 ×
(

�−�
�

)2
)

 , 

where x is the value of the input parameters. Here, the mean value (μ) and standard deviation (σ) for each of 
the four input parameters are given at the top right corner in Figures 7a–7d. The fitting results are shown as 
the red lines in Figures 7a–7d.

2.  We calculate the probability density for each point of the sampled four input parameters by using the 
Gaussian-fitted PDF, which are shown as red dots in Figures 7a–7d.

3.  By assuming the probability density is independent for these four input parameters, the probability density 
of a member in our ensemble equals to the product of the probability density of each of the four inputs that 
corresponds to this member. The results of each ensemble member are shown in Figures 7e–7h as dots with 
the blue and red color showing the overestimation and underestimation of electron flux decay, respectively.

4.  We set a probability density grid that is uniformly distributed in logarithmic space from 10 −15 to 10 −8 1/nT/
cm −3/pT/Hz with 21 points in total. We calculate the median error of the ensemble members with a probability 
density that falls into the corresponding bin for Error >0 and Error <0 separately, which are shown as the red 

Figure 4. The error of log accuracy ratio at the end of the simulation time 
period (134 hr) as a function of energy and percentile of (a) hiss wave 
amplitude, (b) hiss wave peak frequency, (c) background magnetic field, and 
(d) electron density by only varying one input on the horizontal axis while the 
50th percentiles of other three inputs are adopted.
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and blue circles in Figures 7e–7h. The size of the circle is proportional to log(ns), where ns is the number of the 
ensemble members that fall into the corresponding bin. In addition, the lower and upper quartiles are shown 
as the error bars below and above each circle.

Figure  7 presents the error of log accuracy ratio of the ensemble simulations versus probability density at 
108–749  keV energies. The deviation between simulated electron fluxes and observations for 108  keV elec-
trons becomes more significant with decreasing probability density, because electrons at this energy channel are 
close to the efficient resonant energy range by plasmaspheric hiss when varying between fm and Ne. Overall, the 
magnitude of errors for electrons at higher energies (354–749 keV) increases with decreasing probability density 
for most of the errors where the number of ensemble members is large. However, there are a few points of errors 
with small probability density for higher energy electrons, which are caused by the shifting of resonant energy to 

Figure 5. The error of log accuracy ratio at the end of simulations (134 hr) by only varying the two inputs on the vertical axis 
(percentile of hiss wave amplitude) and horizontal axis (from left to right: percentile of hiss wave peak frequency, background 
magnetic field, and electron density), while 50th percentile is adopted for the left two input parameters. The color-coded 
curves represent the contour of the isolines.
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lower energies when varying fm and Ne to the extreme case. The smallest negative errors of the fastest decay in 
our ensemble can reach about −13 for electrons over 108–597 keV energies, which means that the simulations 
overestimate the decay by 13 orders of magnitude compared to the observations. For the probability densities of 
data sampling above 10 −10 1/nT/cm −3/pT/Hz, the median error of underestimation is about −2 at 354 keV energy, 
indicating that the simulated electron flux is 100 times lower than the observation if each of the simulation 
parameters is not chosen properly. Therefore, the simulations of radiation belt electrons strongly depend on the 
uncertainties in the key input parameters.

4. Conclusions and Discussions
In the present study, we perform an ensemble of quasi-linear diffusion simulations of radiation belt electron flux 
decay for ∼6 days during the recovery phase of the storm on 7 November 2015, which is a typical event where 
wave-particle interactions by plasmaspheric hiss dominantly drive the electron flux decay at L = 3.5. Based on 
Van Allen Probes measurements during this ∼5-day event, we use nonparametric statistics (percentiles) to sample 
the distributions of the four key input parameters, including the hiss wave amplitude Bw, hiss wave peak frequency 
fm, background magnetic field B0, and electron density Ne. We develop a Lookup Table (LUT) method to calcu-
late the time-dependent diffusion coefficients, which allows us to incorporate the changing wave environment 
at every time step in our ensemble simulations. By running ensemble simulations with 11 4 members in total 
and comparing them with observed electron flux evolutions from Van Allen Probes, we comprehensively and 
quantitatively analyze the effects of uncertainties in the input parameters on the simulated results. Our principle 
conclusions are as follows:

1.  The uncertainties in hiss wave amplitude play a dominant role in driving the discrepancies between model 
and observed results and the influence of the input parameter uncertainties on simulation accuracy follows 
the sequence of errors Err(Bw) > Err(fm) ≈ Err(Ne) > Err(B0). This result is different from the simulation 
of electron acceleration due to chorus waves by Camporeale et  al.  (2016), which demonstrates that the 

Figure 6. The error of log accuracy ratio of the fastest (triangles) and slowest (diamonds) electron flux decay in the ensemble 
simulations as a function of percentile of hiss wave amplitude on the horizontal axis and percentile of (a–d) hiss wave peak 
frequency, (e–h) background magnetic field, and (i–l) electron density on the vertical axis.
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uncertainties in electron density is primarily responsible for the simulation errors. It is probably due to the fast 
variation of the hiss wave amplitude in space and limited spatiotemporal satellite coverage during this event, 
that the event-based inaccuracy in hiss wave amplitude dominantly causes the simulation errors. Further-
more, the analytical estimations of quasi-linear electron diffusion coefficients from studies of Mourenas and 
Ripoll (2012) and Artemyev et al. (2013) demonstrate the strongest dependence on wave amplitude compared 
to fce/fpe or fce/fm, which amplifies the impact of uncertainties of wave amplitude on the simulation errors.

2.  The perturbations in hiss wave peak frequency and electron density cause an opposite trend of the simulation 
errors for lower and higher energies due to the shift of the resonance energies, showing that the larger fm and 
Ne are more favorable for decay at lower energies and vice versa. Therefore, the energy of the most efficient 
electron flux decay strongly depends on fm and Ne.

Figure 7. The distribution of probability density function (PDF) of (a) the background magnetic field, (b) the total 
electron density, (c) the hiss wave amplitude, and (d) the hiss wave peak frequency based on observations. The red lines 
show the Gaussian fitting of the PDF with the corresponding mean value (μ) and standard deviation (σ) given at the top 
right corner in each panel. (e)–(h) The error of log accuracy ratio of the ensemble simulations versus probability density at 
indicated energies, with light blue and light red dots showing the overestimation and underestimation of electron flux decay, 
respectively. The blue and red dotted lines show the median values, with error bars below and above the dots representing the 
lower and upper quartiles, respectively.
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3.  The magnitude of simulation errors increases with decreasing probability density for most of the errors 
where the number of ensemble members is large, with the largest overestimation of decay reaching 13 orders 
of magnitude compared to the observations. Therefore, the simulations of radiation belt electrons strongly 
depend on the uncertainties in the key input parameters.

Although our results contribute to a better understanding of how the inaccuracy in the simulated electron flux evolu-
tion is apportioned to event-based uncertainty in the four key input parameters from the realistic and limited satel-
lite measurements, we note some limitations, possible improvements, and future work of the present study. First, 
the input sampling is based on a limited spatial (i.e., L, MLT, and MLAT) and temporal coverage of Van Allen 
Probes during this event. The technique of inferring hiss wave amplitude from the electron fluxes measured by Polar 
Orbiting Environmental Satellites (POES) can help to improve the accuracy of current event-based wave models  
(de Soria-Santacruz et al., 2015). Second, while the quasi-linear theory is most widely adopted to reproduce the 
essential features of the observed electron flux dynamics on a global scale, it may underestimate the electron scat-
tering effect by intense coherent plasmaspheric hiss (e.g., Tsurutani et al., 2018). Third, the calculation of the proba-
bility density of a member in our ensemble is based on the assumption that the probability density is independent of 
the four key input parameters, which means that any combination of them is possible in our ensemble simulations. 
As we use the percentile to sample the event-based distributions of inputs, the values of these four inputs are within 
an observable range in reality even for the extreme cases. For example, the most intense wave amplitude of hiss 
(corresponding to the 99th percentile of Bw) is below 80 pT, which can be observed in the high-density region inside 
the plasmasphere or plumes (e.g., Khazanov & Ma, 2021; Ma et al., 2021). In addition, the extreme cases of electron 
total density (corresponding to the 1st and 99th percentile of Ne) are within a factor of 2 compared to the empirical 
model from Sheeley et al. (2001), which still represents the high-density region as the typical density in the plasma-
trough is below 50 cm −3. However, there can be correlations among these four inputs in reality. As the current study 
is limited to the analysis based on a typical event, it is difficult to determine the correlations (or more accurately, the 
joint probability distribution) among these four input parameters. Analyzing multiple events (such as superposed 
epoch analysis) that are similar to the current one in terms of geomagnetic conditions and the gradual electron flux 
decay mainly driven by hiss can help to provide better distributions of all inputs and improve the understanding of 
the extreme cases. Furthermore, we can estimate the cross-correlation between these inputs based on multiple events 
analysis, which is computationally challenging and beyond the scope of this study and is left to future work.

In conclusion, our study provides important quantification of how event-based uncertainties in the key input 
parameters influence the simulated electron flux decay driven by hiss. The calculations of the probability density 
of the simulation errors in our ensemble enable us to evaluate the dependence of the radiation belt electron life-
time on the key parameters, which can benefit radiation belt nowcast and forecast. Quantifying the uncertainty in 
our quasi-linear diffusion simulations is a necessary step toward robust verification and confidence estimation of 
our radiation belt electron hindcast and forecast models.

Data Availability Statement
The EMFISIS data were obtained from http://emfisis.physics.uiowa.edu/Flight/. The ECT data were obtained from 
https://rbsp-ect.newmexicoconsortium.org/data_pub/. The AL index was obtained from the OMNI data set (https://
omniweb.gsfc.nasa.gov/ow_min.html). The results of ensemble simulations and the source data used to produce 
figures in the present study are publicly available at https://doi.org/10.6084/m9.figshare.19400459 (Hua et al., 2022)
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